

Magnesium Oxide

MgO

◆ Key Properties of Magnesium Oxide (MgO)

- 🌈 Broad IR Transmission: Transparent from $\sim 0.3 \mu\text{m}$ to $7 \mu\text{m}$, ideal for visible, near-IR, and mid-IR systems.
- 🔍 Moderate Refractive Index: ~ 1.72 at $1 \mu\text{m}$, offering good optical clarity for IR windows and imaging optics.
- 🧪 Chemically Inert: Excellent resistance to moisture, corrosion, and chemical attack — far superior to hygroscopic salts like NaCl and KBr.
- 🔥 High Thermal Stability: Exceptional resistance to heat and thermal shock, making it ideal for furnace viewports and high-temperature optical systems.
- gneiss Mechanical Strength: Hard, abrasion-resistant, and suitable for rugged industrial and scientific environments.
- ⚡ IR Laser Compatible: Suitable for CO₂ laser systems and other high-power IR applications requiring durable window materials.
- 🔩 Stable in Harsh Conditions: Performs reliably in extreme environments, including high-temperature, high-radiation, and corrosive settings.

🔧 Applications of Magnesium Oxide (MgO)

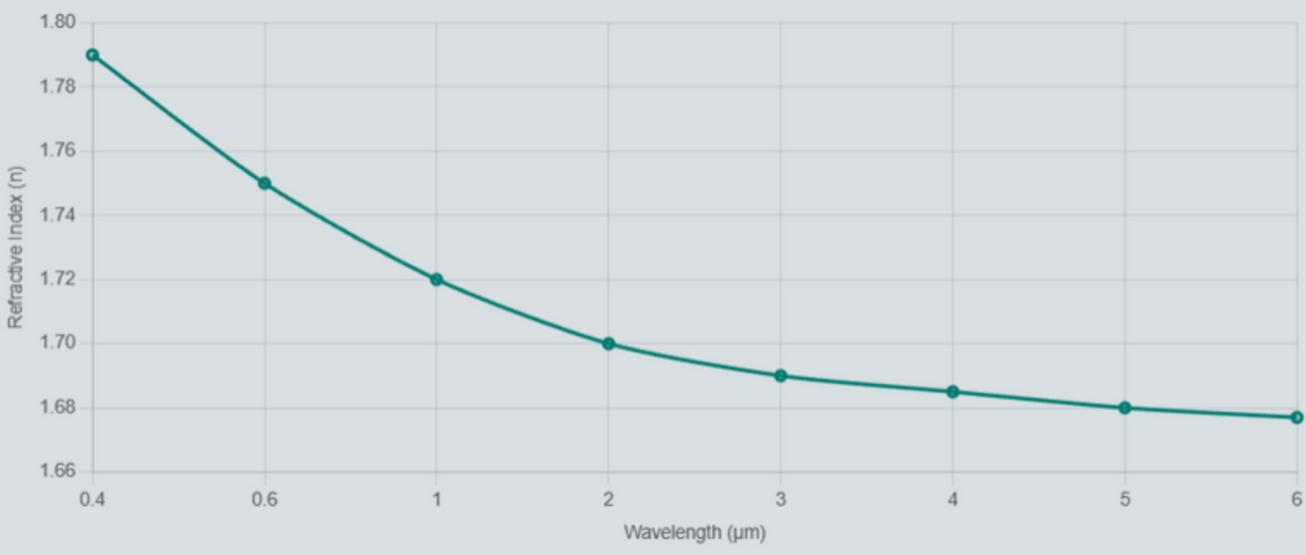
- 🔥 High-Temperature Viewports: Ideal for furnace windows, thermal monitoring systems, and high-heat industrial optics.
- 💡 IR Imaging & Sensing: Suitable for near-IR and mid-IR instruments thanks to broad 0.3–7 μm transmission.
- ⚡ CO₂ Laser & IR Laser Optics: Performs well under high-power IR laser exposure, especially at 10.6 μm .
- 🧪 Chemically Harsh Environments: Highly resistant to corrosion, moisture, and chemical attack in demanding industrial settings.
- 📡 Aerospace & High-Radiation Optics: Stable under radiation and extreme environmental conditions.
- 防护罩 Protective IR Windows: Used for rugged IR covers, inspection ports, and protective barriers in scientific and industrial systems.

Technical Parameters of Magnesium Fluoride (MgF₂)

Property	Typical Value
Transmission Range	0.30 μm – 7.0 μm
Refractive Index	1.72 @ 1 μm
Density	3.58 g/cm ³
Melting Point	2852 °C
Hardness (Knoop)	~700 kg/mm ² (very hard)
Thermal Expansion	~13 × 10 ⁻⁶ /°C
Crystal Type	Cubic (single crystal)
Hygroscopic	No
Chemical Formula	MgO
Applications	IR windows, furnace viewports, CO ₂ laser optics, harsh-environment sensors, high-temperature systems

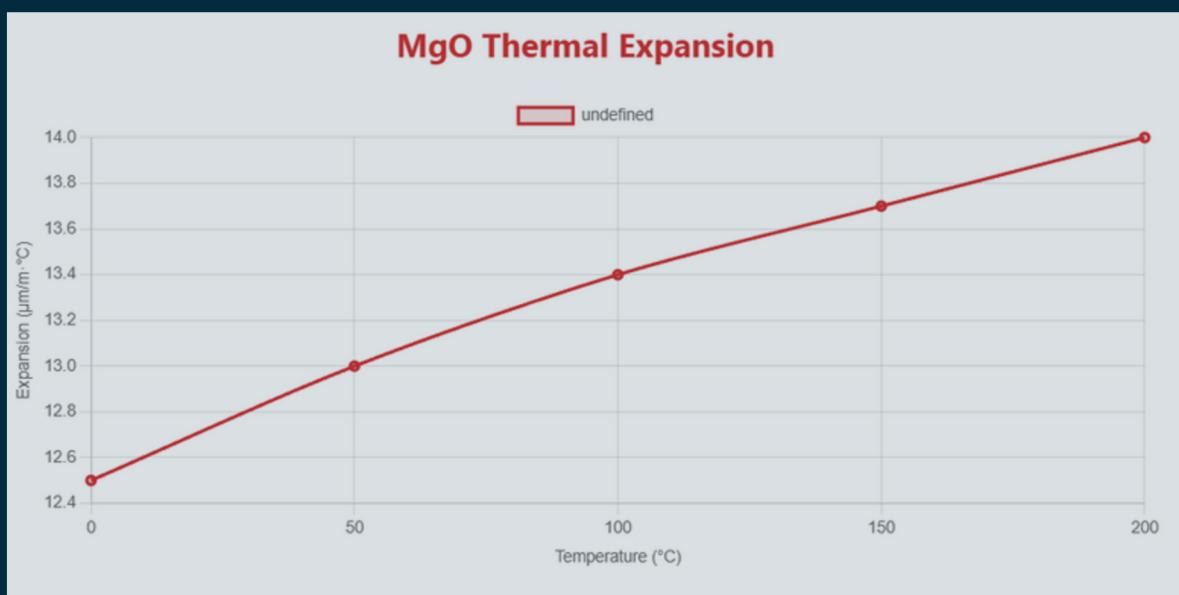
Magnesium Oxide (MgO) is a highly durable infrared optical material with strong transmission from 0.3–7.0 μm, making it ideal for high-temperature viewports, thermal imaging systems, CO₂ laser applications, industrial sensors, and optical platforms operating in harsh environments.

It has a moderate refractive index (~1.72), low dispersion, and is non-hygroscopic, providing excellent environmental and chemical stability compared with hygroscopic salts like NaCl or KBr. As a hard, thermally robust, and corrosion-resistant crystal, MgO can be fabricated into IR windows, prisms, protective viewports, and high-heat optical components, maintaining reliable performance under demanding industrial and scientific conditions.



Magnesium Oxide (MgO) – Optical & Thermal Graphs

MgO Transmission (0.30–7.0 μm)


MgO Refractive Index

Magnesium Oxide (MgO) provides strong transmission from 0.30 μm to 7.0 μm , covering the visible, near-infrared, and mid-infrared regions. With its moderate refractive index (~1.72) and low dispersion, MgO is well suited for IR imaging systems, CO₂ laser applications, high-temperature viewports, and broadband IR windows and optical components.

MgO offers excellent thermal stability and maintains reliable optical performance in demanding laboratory and industrial environments. As a hard, chemically inert, and thermally robust material, it can be fabricated to high precision for IR windows, protective viewports, prisms, and other components used in high-heat or corrosive conditions.

Being non-hygroscopic and chemically stable, MgO is easy to handle and remains a dependable choice for industrial IR optics, high-temperature systems, laser platforms, and harsh-environment infrared applications.

FAQ

Q: What is Magnesium Oxide (MgO) used for?

A: Magnesium Oxide is widely used for high-temperature viewports, IR imaging, thermal monitoring systems, CO₂ laser optics, and harsh-environment industrial windows, thanks to its broad 0.3–7 μm transmission and exceptional heat resistance.

Q: What makes MgO different from other infrared materials?

A: MgO is exceptionally thermally stable, chemically inert, and mechanically strong, outperforming hygroscopic salts such as NaCl and KBr. It also offers good mid-IR transparency, resistance to corrosion, and excellent thermal-shock durability.

Q: Is Magnesium Oxide hygroscopic?

A: No. MgO is non-hygroscopic, meaning it does not absorb moisture and remains stable in humid, outdoor, and chemically aggressive environments.

Q: Is MgO suitable for high-power IR and CO₂ lasers?

A: Yes. MgO performs well in CO₂ laser systems (10.6 μm) and other high-power IR setups due to its excellent heat tolerance and mechanical robustness.

Q: What types of optical components can be made from MgO?

A: MgO is commonly fabricated into IR windows, protective viewports, prisms, inspection ports, and industrial optical components designed for high-temperature or corrosive environments.

Q: How durable is Magnesium Oxide?

A: MgO is extremely durable — offering high hardness, abrasion resistance, and strong chemical and thermal resilience. It is well-suited for demanding industrial, aerospace, and scientific applications.

Q: Can MgO optics be anti-reflection coated?

A: Yes. MgO components can be supplied uncoated or with IR anti-reflective and high-temperature protective coatings, depending on the application.

Q: Is MgO safe to handle?

A: Yes. MgO is non-toxic, chemically stable, and safe to handle with standard optical precautions (gloves, clean handling environment)